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  A BSTRACT  
 Microdialysis has been used in many tissues, including skin, 
brain, adipose tissue, muscle, kidney, and gastrointestinal 
tract, to recover low – molecular mass endogenous media-
tors, metabolites, and xenobiotics from the interstitial space. 
Recently, molecules of larger molecular mass, such as 
plasma proteins, cytokines, growth factors, and neuropep-
tides, have also been recovered successfully using larger-
pore membranes. Microdialysis recovery of large molecules 
offers the opportunity to identify patterns of protein expres-
sion in a variety of tissue spaces and to evaluate clinically 
useful biomarkers of disease. From this may develop a bet-
ter understanding of the disease process and its diagnosis 
and more targeted approaches to therapy.  
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   INTRODUCTION 
 Microdialysis is a well-established technique for the contin-
uous sampling of small water-soluble molecules within the 
extracellular fl uid space in vivo. It has an advantage over 
other sampling techniques in that it can be used to follow 
temporal variations in the generation and release of a sub-
stance at a discreet location within the tissue space. Since its 
initial use in the brain of experimental animals for the recov-
ery of neurotransmitters and other small hydrophilic sol-
utes, 1  microdialysis has been adapted for use in many other 
tissues, including skin, 2-9  adipose tissue, 10  muscle, 11  ,  12  and 
gastrointestinal tract. 13  However, the ability to recover 
 molecules of higher molecular mass has, until recently, 
been limited by the availability of dialysis probes with high 
molecular weight cutoffs (MWCOs).  
 The development of membranes suitable for the recovery of 
large molecules has been driven by the need to sample the 
extracellular fl uid space for bioactive proteins and regula-
tory peptides as markers of tissue homeostasis and, more 

important in a clinical setting, tissue dysfunction and repair. 
This brief review will consider how recent studies have 
advanced the understanding of the process by which large 
molecules are recovered by dialysis and how this may be 
applied to the use of such probes in clinical settings in the 
future.  

  PRINCIPLES OF DIALYSIS OF LARGE MOLECULES 
 Some of the fi rst researchers to report the successful recov-
ery of large molecules by microdialysis used a polycarbon-
ate membrane extracted from a plasmapheresis capsule 
(Plasmafl o, OP-02 Asahi Medical Co Ltd, Kimal plc Broms-
grove, Worcs UK) confi gured as a linear, fl owthrough dialy-
sis probe. These membranes had an MWCO of 300 000 Da 
and a maximum pore size of 0.3 µm, as stated by the manu-
facturer. They were used experimentally in both animal mod  -
els and humans confi gured as either a linear fl owthrough 
membrane or a concentric dialysis probe, to recover serum 
proteins, neuropeptides, cytokines, and growth factors. 14-16  
Since then, commercially available polyethersulfone micro-
dialysis probes with an MWCO of 6000 to 100 000 Da have 
been used to recover a wide range of molecular species 
ranging in size from 3000 to 120 000 Da. 17-20  Some of these 
studies are summarized in  Table 1 . 
   Theoretically, the probes at the higher end of the MWCO 
range may appear to be satisfactory for the dialysis of cyto-
kines, growth factors, and even high – molecular mass serum 
proteins. Practically, however, the number of pores within 
most of the membranes currently used that are capable of 
allowing the passage of such large molecules is small and 
results in an increased mass transport resistance and a low 
relative recovery. For example, the dialysis effi ciency (E d ) 
of a 10 000-Da protein across a commercial 100 000-Da 
MWCO membrane perfused at a fl ow rate of 1 µL/min is 
typically below 5%. 30  
 There are also several experimental factors, including probe 
perfusion rate and duration, that may signifi cantly affect 
macromolecular recovery. This is illustrated by the in vitro 
dialysis of serum albumin (67 kDa) using a plasmapheresis 
membrane confi gured as a linear probe of 1.5 cm length, 
where E d  decreases exponentially from 1.01 ± 0.02 at a per-
fusion rate of 0.1 µL/min to 0.17 ± 0.06 at perfusion rate of 
>5 µL/min ( Figure 1 ). The dialysis effi ciency for a molecule 
the size of serum albumin may be similarly compromised 
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in vivo. This is evidenced by the fall in steady-state pro  -
tein concentration recovered in dialysate from healthy skin 
from a value of 0.73 ± 0.30 mg/mL at a perfusion rate of 
5 µL/min to 0.47 ± 0.19 mg/mL at 10 µL/min (P < .005) 
(Fellows et al, unpublished data, 2005). However, while the 
dialysate protein concentration was lower at the higher per-
fusion rates, the total amount of analyte recovered over a 
30-minute perfusion period was greater at the higher 
 perfusion rates (192 ± 14 µL and 225 ± 38 µL at 5 and 
10 µL/min, respectively), suggesting that it may be an inter-
esting compromise between the demands of an assay for 

total amount of material and its requirements for a given 
minimum concentration or volume.   
 It should also be noted that continuous perfusion of large-
pore dialysis membranes for long periods results in an appar-
ent fall in analyte recovery, with initial total protein levels 
signifi cantly higher than those recovered in later samples 
( Figure 2 ). 23  One explanation for this is that the amount of 
material available for dialysis recovery falls with time. It is 
well recognized that the concentration gradient of any solute 
within the tissue space within the proximity of the probe will 
be determined by the rate at which it is supplied by, and dif-
fuses through, the tissue and also by the rate at which it is 
removed in the dialysate. This phenomenon may be particu-
larly true for larger, more slowly diffusing molecules at low 
biological concentrations within the tissue space.   
 Taken together, these factors suggest that for high –  molecular 
mass solutes it is unlikely that even at very low rates of per-
fusion a diffusion equilibrium will be reached and a sample 
representative of the biological concentration of the analyte 
will be recovered.  Figure 2  suggests that the concentration 
of total protein outside the probe calculated from the 
relationship 
  C  tissue  =  C  outlet  / (1  –  e  –    PS    /   F   )  (1)
 where  C  tissue  and  C  outlet  are the concentration of the solute in 
the tissue and outfl ow of the probe,  PS  is the permeability –
 surface area product for the dialysis membrane, and  F  is the 
perfusion rate 31  is initially between 25 and 30 mg/mL but 
falls to 4 to 6 mg/mL after extended periods of perfusion. 
Although the initial values of total protein in dialysate 
approximate well to the published values for interstitial 

  Table 1.        Examples of Microdialysis Recovery 
of Large Molecules*     

  Molecule   Tissue   Reference 

 IL-1, IL-6   Brain   Woodroofe et al 21  
 IL-1 � , IL-6, NGF   Brain   Winter et al 15  ,  16  
 IL-6   Skin   Sjogren et al 22  
 Total protein,    Skin   Schmelz et al 14  
 neuropeptides
 Albumin   Skin   Fellows et al 23  
 IL-6, MCP1   Peritoneum   Riese et al 24  
 VEGF   Breast   Dabrosin 17  ,  25  
 TNF �    Bone   Brown et al 26  
 IL-1 � , IL-1 � , IL-6,    Reproductive   Licht et al 27  
 M-CSF, VEGF  tract
 IL-1 � , IL-6, TNF, MCP1   In vitro   Trickler and Miller, 28  
   Ao et al 29  
 Dextrans 3000 to    In vitro   Schutte et al 30    
 150 000 Da

   *IL indicates interleukin; MCP1, monocyte chemotactic protein-1; 
M-CSF, macrophage colony-stimulating factor; NGF, nerve growth 
factor; TNF, tumor necrosis factor- � ; VEGF, vascular endothelial 
growth factor.    

  Figure 2.    Effect of continuous perfusion on recovery of total 
protein from healthy human skin using a 300 000-Da large-pore 
dialysis membrane. The probe was perfused at 3 µL/min with 
physiological Ringer ’ s solution, and samples were collected 
initially at 1- minute intervals and then at 5-minute intervals. 
Data are mean ± SEM from 8 volunteers. Insert shows the 
relative proportions of albumin and hemoglobin in the dialysate 
samples collected over the fi rst 5 minutes of perfusion.   

  Figure 1.    In vitro dialysis effi ciency (E d ) of bovine serum 
albumin (67 kDa) using a plasmapheresis membrane confi gured 
as a linear probe of 1.5 cm length perfused with physiological 
Ringer ’ s solution (pH 7.3). Data are mean ± standard error of 
mean. from 3 to 5 probes at each fl ow rate. E d  is calculated as 
concentration in probe outfl ow/concentration in external medium.   
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 protein content of between 12 and 30 mg/mL sampled using 
micropuncture, interstitial wicks, or blister fl uid, 32-34  the 
absolute amount of any analyte present in the tissue space 
cannot truly be estimated without calibration of the probe. 
 Another factor that will infl uence recovery of solute from 
the interstitial space is tissue hydration. Recovery may be 
attenuated by the loss of fl uid by ultrafi ltration across the 
highly porous membrane, particularly at high fl ow rates. 
Fluid loss into the tissue, as well as having the potential to 
compromise tissue function and stimulate changes in the 
tissue levels of the target molecules, may also dilute the 
content of the interstitial space. An increase in tissue water 
will reduce further the often low concentrations of the target 
molecules within the tissue space and may lead to an under-
estimate of the concentration of the molecules of interest. 
This is seen when the performance of large pore membranes 
placed at different tissue sites is compared. We have found 
that using the linear 300 000-Da MWCO membranes in 
healthy human skin, both the volume recovery and the total 
protein concentration of dialysate from probes placed on the 
ventral surface of the forearm, close to the wrist, differ sig-
nifi cantly from those measured using probes located more 
proximally. In these experiments on healthy volunteers, rel-
ative volume recovery measured over ten 3-minute collec-
tions fell from 1.04 ± 0.04 in probes placed in the upper 
forearm to 0.92 ± 0.05 in those placed distally close to the 
wrist (P < .02) (Clough et al, unpublished observations, 
2005). 
 Several groups have attempted to overcome fl uid loss into 
the tissue and to improve total volume recovery by the addi-
tion of osmotic agents to the probe perfusate. 28  ,  35  These 
agents have included serum albumin and modifi ed starches, 
both of which tend to reduce fl uid loss into the tissue space. 
Some of the additives used have the added advantage of 
reducing nonspecifi c adsorption of analyte onto the material 
of the probe or act as binding agents to stabilize and enhance 
recovery of hydrophobic or highly tissue-bound molecules. 
 The ability to recover hydrophobic molecules by dialysis 
appears compromised by their adsorption onto the poly-
meric materials used to construct the probe and onto the 
membrane itself. 36  ,  37  Consequently, the in vitro recovery of 
several cytokines, including interleukin 2 (IL-2), IL-4, IL-5, 
interferon gamma (IFN- � ), and tumor necrosis factor alpha 
(TNF � ), has been reported to be as low as 1%. 25  ,  29  For other 
cytokines, in vitro recovery effi ciencies of dialysis using a 
300 000-Da membrane have been reported to be somewhat 
higher: 45% ± 8%, 28% ± 4%, and 22% ± 8% for IL-6, IL-
1 � , and nerve growth factor (NGF), respectively, compared 
with 17.5% ± 6% for serum albumin. 38  Recovery of cyto-
kines has been enhanced experimentally by the addition to 
the probe perfusate of albumin, modifi ed starches (cyclo-
dextrins), or lipids. 9  ,  19  ,  22  ,  28  ,  39  ,  40  While the ability of these 
agents to increase recovery varies considerably and in vitro 

appears to depend on the nature of the dialysate membrane 
and the analyte, 9  E d  may be enhanced such that in vivo, a 
cytokine that is undetectable using a saline perfusate is 
recovered in measurable amounts (10  - 12 -10  - 9  M) when 
bovine serum albumin (BSA) is added to the perfusate at 
concentrations of between 3.5% and 10% (mass-to-volume 
ratio). 28  Addition of antibody-coated microbeads to the 
probe perfusate can similarly enhance cytokine recovery by 
up to 1000% in vitro by trapping cytokine molecules and 
increasing the diffusive driving force across the probe mem-
brane. 29  This has been particularly effective for TNF �  and 
IL-5, 2 infl ammatory cytokines that have proved particu-
larly diffi cult to recover using saline perfusion of 300 000-
Da membranes in vivo (Clough et al, unpublished data, 
2005). Whether these recovery enhancers are as effective in 
vivo as they appear to be in vitro has yet to be explored. 
 In summary, the consequence of these various physical 
restraints alone or in combination is that the amount of 
high – molecular mass material recovered in dialysate, even 
under optimal conditions, is frequently very low. Further-
more, the concentrations recovered in dialysate may be 
unrepresentative of tissue levels. Evidence for changes in 
macromolecular analyte levels from baseline may thus be 
more effectively sought than absolute values.  

  ANALYSIS PLATFORMS FOR LARGE MOLECULES 
IN DIALYSIS SAMPLES 
 The future of the application of microdialysis to the moni-
toring of large molecules as markers of disease in a prognos-
tic or diagnostic setting depends very much on the ability to 
detect and assay them with suffi cient sensitivity and repro-
ducibly. While the analytical methods used to detect low –
 molecular mass solutes in dialysate have been extensively 
reviewed, 41  ,  42  there are fewer reviews of the analysis plat-
forms suitable for the detection of proteins in dial    ysate. 43  

 As described above, the concentration of many of the pro-
teins of interest is very low, in the nanogram to picogram 
per milliliter range. Until recently, the majority of studies 
have employed sensitive fl uorometric or radio or enzyme 
immunoassays, many used at the limits of their detection. 
The volume requirements of these assays are considerable 
and limit the number of proteins assayable within a single 
dialysate sample. 16  ,  22  Sensitive temporal resolution of 
changes in protein levels at a given site within the tissue 
space may also be precluded if low perfusion rates and 
extended collection times are required. The advent of multi-
plexed cytokine arrays where 10 or more cytokines can be 
assayed using a 25 to 50 µL sample volume with a similar 
sensitivity to that of conventional immunoassays, has to 
some extent overcome this. 43  In Lee et al (unpublished data, 
2004) own hands they have proved a useful platform for the 
analysis of the differential cytokine production in dialysate 



The AAPS Journal 2005; 7 (3) Article 69 (http://www.aapsj.org).

E689

E d  of ~20%) appears somewhat lower than that reported 
using other techniques. However, the protein content of the 
samples collected within the fi rst 2 minutes of the start of 
perfusion are more than 5 times higher than this and close to 
those recovered in blister fl uid. 33  Similar or greater levels 
are also recovered during dermal provocation with agents 
known to induce plasma extravasation. 53  ,  54  
 Microdialysis has been used to follow the upregulation of 
infl ammatory cytokines within the interstitial space in nor-
mal and infl amed skin. 22  ,  24  ,  55  It has also been used in breast 
tissue to investigate changes in angiogenic factors such as 
soluble vascular endothelial growth factor (VEGF) in health 
and during tumor angiogenesis 17  ,  56  and to monitor changes 
within the environment of both acute and chronic 
wounds. 57  ,  58  The wound environment has proved quite dif-
fi cult to sample because of the nature of the wound exudate. 
In exudating chronic ulcers, the average dialysate protein 
concentration was found to be 0.5 mg/mL (Avery et al, 
unpublished data, 2005). By comparison, the concentration 
of protein in chronic wound fl uid obtained by direct sam-
pling ranges from 26 to 51 mg/mL, with a mean (± standard 
deviation) of 38 ± 13 mg/mL, suggesting that dialysis effi -
ciency for total protein is very low under these conditions. 
Interestingly, volume recovery was also much reduced, with 
less than 60% recovery using a 2-cm dialysis length of 300 
000-Da plasmapheresis membrane confi gured as a loop to 
lie within the wound environment. 
 Recovery and detection of some markers of infl ammation 
anticipated to be present in infl amed skin, including TNF �  
and IL-5, have proved problematic. Whether this is due to a 
reduced availability or concentration within the environ-
ment of the probe or due to adhesion of the bioactive mole-
cule onto the material of the probe has yet to be confi rmed 
either in or ex vivo.  

  MICRODIALYSIS OF LARGE MOLECULES 
IN THE BRAIN 
 Intracerebral microdialysis has been used extensively as a 
research tool in the investigation of the neurochemical and 
metabolic changes that occur following acute brain injury. 
However, few studies have pursued the recovery of larger 
molecules, particularly cytokines, from the brain by micro-
dialysis. Studies that have attempted to investigate cytokine 
levels in the traumatized brain have generally been limited 
to measurements within the cerebrospinal fl uid and serum 
of patients. Recently, we have reported that it is possible to 
recover high – molecular weight molecules from the paren-
chyma of the frontal lobe of the brain using a concentric 
version of the 300 000-Da MWCO microdialysis probe. 16  ,  38  
Samples were collected at intervals for periods of several 
hours during the patients ’  stay in the intensive care unit. 
We found that the levels of IL-6 measured in outfl owing 

and in human skin with a spatial resolution of millimeters 
and temporal resolution of minutes. 

 Mass screening tools such as the recent proteomic approaches 
using mass spectrometry have been used to evaluate pat-
terns of protein expression in a variety of tissue fl uids and 
to explore clinically useful biomarkers of disease. 45  These 
fl uids include plasma, cerebrospinal fl uid, 46  and urine. 47  
Plasma is the body fl uid most extensively assayed because 
of its accessibility in which more than 175 candidate bio-
marker proteins with associations with cardiovascular dis-
ease have already been characterized. 45  ,  48  ,  49  Cerebrospinal 
fl uid has been probed using 2D gel electrophoresis to detect 
changes in protein expression patterns in patients with neu-
rological or psychological disease. 46  2D gel electrophoresis 
in combination with mass spectrometry has also been used 
to investigate protein patterns in human cerebral microdial-
ysate (see below). 18  In addition, cerebral dialysate in rats 
has been screened for endogenous neuropeptide generation 
using capillary liquid chromatography – tandem mass spec-
trometry. 20  These approaches, by which many proteins and 
peptides can be screened at one time, lend themselves to the 
identifi cation of novel proteins whose release can be corre-
lated with different physiological, pathophysiological, or 
behavioral states. It is probable that the advent of commer-
cial probes suitable for the recovery of large molecules will 
result in an increase in the application of such proteomic 
approaches to microdialysate samples. The analytical chal-
lenges, just as in plasma, will be (1) the depth of the tissue 
fl uid proteome, in which concentrations of protein biomark-
ers vary over many orders of magnitude; and (2) the breadth 
of the tissue fl uid proteome, with potentially many hundreds 
of bioactive markers.  

  MICRODIALYSIS SAMPLING OF PROTEINS IN SKIN 
 Various techniques have been used to sample the interstitial 
space in skin and to explore the changes in interstitial pro-
tein content under both physiological and pathophysiologi-
cal conditions. These include the wick technique and the 
blister suction technique, which have been widely used in 
the skin for dermatological and pharmacokinetic stud-
ies. 33  ,  50  ,  51  They yield values for total interstitial protein 
 concentration of between 18 and 27 g/L, or ~30% to 40% of 
that measured in plasma. Of this, 13 to 17 g/L is albumin. 32  
Although recent studies have shown that there is a close 
correlation between the 2 techniques when used to sample 
the subcutaneous interstitial space in healthy human volun-
teers, neither particularly lends itself to monitoring rapid 
changes in tissue protein levels. Several groups have now 
used microdialysis to follow both spatial and temporal 
changes in interstitial fl uid protein content in resting and 
provoked skin, as discussed earlier. 6  ,  52  Steady-state basal 
interstitial protein concentration (calculated assuming an 
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the opportunity to recover larger bioactive molecules and 
protein-bound substrates that could otherwise be recovered 
in vivo. They allow monitoring of changes in interstitial 
levels of these molecules in a wide range of physiological 
and pathophysiological states. Microdialysis recovery of 
large molecules also offers the opportunity to identify pat-
terns of protein expression in a variety of tissue spaces and 
to evaluate clinically useful biomarkers of disease. From all 
this may develop a better understanding of the disease 
 process and its diagnosis and more targeted approaches to 
therapy.    
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dialysis fl uid from 13 patients with traumatic brain injury 
correlated with survival outcome and were between 60 and 
1230 pg/mL. NGF levels were between 180 and 2964 pg/mL, 
with a tendency for NGF levels to be higher in nonsurvi-
vors. IL-1 �  (0 – 140 pg/mL), by contrast, showed no associ-
ation with clinical measures. Interestingly, total protein and 
albumin levels measured in dialysate remained relatively 
constant over periods of up to 5 days. Thus, it seems unlikely 
that the proteins/cytokines recovered may be consequent to 
local tissue damage caused by probe insertion. The levels 
of total protein in cerebral dialysate of ~100 µg/mL were 
3-fold lower than those found in dialysis fl uid from the skin 
using the same membrane. This is consistent with the main-
tenance of the blood-brain barrier. However, the fi nding that 
~70% of the total protein that was recovered in cerebral 
dialysate was albumin is in agreement with similar observa-
tions in the skin. 
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protein spots in the 2D gels, of which they identifi ed more 
than half. The 95 spots identifi ed by subsequent mass spec-
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ease severity or progression. 
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cytokine levels.  

  CONCLUSION 
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